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Normal components of benzenoid systems 
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Summary. Consider a benzenoid system with fixed bonds and the subgraph 
obtained by deleting fixed double bonds together with their end vertices and 
fixed single bonds without their end vertices. It has often been observed for 
particular benzenoid systems, and conjectured (or stated) that, in general, such 
a subgraph has at least two components, and that each component is also a 
benzenoid system and is normal. But there are no rigorous proofs for that. The 
aim of  this paper is to present mathematical proofs of  those two facts. It is also 
shown that if a benzenoid system has a single hexagon as one of its normal 
components then it has at least three normal components. 
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1 Introduction 

A benzenoid system H[1]  is a finite connected subgraph of the infinite hexagonal 
lattice without cut vertices or nonhexagonal interior faces (see Fig. 1). Benzenoid 
systems are extensively used in the study of  benzenoid hydrocarbons [1-4], as 
they aptly represent the skeleton of  such molecules. A Kekul6 structure of H is 
a perfect matching of the vertices of  H (or, in other words, a covering of  all 
vertices of H by disjoint edges). All benzenoid systems mentioned later have 
Kekul6 structures unless otherwise specified. A linear algorithm to find a Kekul6 
structure of a benzenoid system H or show that there are none is given in [5]. A 
bond of  benzenoid system H is a f ixed single (fixed double) bond if it belongs to 
none (all) of the Kekul6 structures of  H. A bond is f ixed if  it is either a fixed 
single bond or a fixed double bond. A linear algorithm to find all fixed bonds of  
a benzenoid system is presented in [6]. A non-polynomial algorithm for the same 
purpose is outlined in [7]. A benzenoid system with a Kekul6 structure and 
without fixed bonds is called normal. If  a benzenoid system H has fixed bonds 
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Fig. 1. 

then the subgraph induced by all nonfixed bonds of H is (possibly) the union of 
disjoint connected components (see Fig. 2). We denote this induced subgraph by 
N(H), and call it the unfixed subgraph of H. An equivalent definition of N(H) is 
that it is equal to the subgraph of H obtained by deletion of all fixed double 
bonds together with their end vertices and of all fixed single bonds without their 
end vertices. These two operations are illustrated in Fig. 2. That a benzenoid 
system H having fixed bonds implies that its unfixed subgraph N(H) has at least 
two connected components and that each of them is a normal benzenoid system 
are considered to be well-known facts [1], [2, p 51]. However, to the best of our 
knowledge, there are no rigorous proofs of these facts. The aim of this paper is 
to give mathematical proofs for both of them. It follows that a benzenoid system 
H with fixed bonds has at least two normal components, i.e. two disjoint 
maximal connected subgraphs which are normal benzenoid systems. We also 
prove that if a benzenoid system has a single hexagon as one of its normal 
components then it has at least three normal components. 

These results imply that the usual well-known classification of Kekulean 
benzenoid systems as normal or essentially disconnected [1, 2] is indeed justified 
in that any enzenoid system which is not normal has several disconnected 
normal components. As mentioned above, fixed bonds of H and hence normal 
components can be found in linear time. In addition to the insight into the 
structure of the corresponding benzenoid hydrocarbon so obtained, finding 
normal components is useful in the computation of many invariants of ben- 
zenoid systems. To illustrate, note that the number of Kekul6 structures of H is 
the product of the numbers of Kekul6 structures of each of its normal compo- 
nents. It follows from this observation that the Pauling bond order [8, 9] of a 
bond, which is equal to the proportion of Kekul6 structures which contain it, can 
be computed considering only the normal component to which it belongs. Also 
a Clar formula of H [10, 11] for a benzenoid hydrocarbon, i.e., a representation 
of a maximum set of mutually resonant hexagons (which are disjoint and for 
which there is a Kekul6 structure in which each of them contains three double 
bonds) can be obtained by considering each normal component of H in turn, 

) 
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After deleting N(H) 
fixed double bonds Fig. 2. 
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finding a Clar formula for it and assembling them into a Clar formula for H [12]. 
It also follows from Lemma 1 below that each of the conjugated circuits of H is 
contained in a normal component of H. This property can be exploited in 
enumerating them, for instance in the conjugated circuit model [13, 14, 15]. Note 
that enumeration of all normal and essentially disconnected benzenoid systems 
as well as of other classes and subclasses of benzenoids has been the object of 
much recent study (e.g. [16, 17, 18]). 

2 Definitions 

A generalized benzenoid system [19, 20] is a finite connected subgraph of the 
infinite hexagonal lattice. It may therefore contain cut vertices or nonhexagonal 
interior faces, as indicated by the graphs of Kekulene and biphenyl in Fig. 3. The 
concepts of Kekul6 structure and of fixed bond extend to generalized benzenoid 
systems in a straightforward way. A benzenoid system is a generalized benzenoid 
system but the converse is not true (see Fig. 3, where only the third graph is a 
benzenoid system). A circuit C (or closed simple path) of a generalized ben- 
zenoid system H is a conjugated circuit if there is a Kekul6 structure of H in 
which the vertices of C match themselves, or in other words, if after deleting C 
from H together with all its vertices and adjacent edges the remaining graph has 
a Kekul6 structure. None of the bonds belonging to a conjugated circuit are 
fixed. A cut bond of a generalized benzenoid system H is a bond whose removal 
(without its end vertices) disconnects H. Clearly, if a generalized benzenoid 
system has no fixed bonds then it has no cut bonds. 

A bond of a benzenoid system H is a separating bond if the removal of its 
end vertices disconnects H. If  e is a separating bond, then let H(e) and H(e)" 
denote the benzenoid systems obtained by splitting H at e such that H(e) and 
H(e)' share e only (see Fig. 4). The degree of a vertex is defined to be the number 
of vertices adjacent to it. 

A generalized benzenoid system H partitions the plane into a number of 
connected regions; these regions are called the faces of H. The one with infinite 

Fig. 3. 

H 
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size is called the exterior face of H. If  H has no cut bond, then the boundary of 
the exterior face is defined to be the boundary of H. 

3 Normal components 

The following theorem was proved in [19]: 

Theorem 1. Let H be a generalized benzenoid system without cut bonds. Then H 
has no fixed bonds if and only if the boundary of each nonhexagonal face of H 
is a conjugated circuit. 

Theorem 1 is illustrated in Fig. 5. 
The second fact mentioned in the introduction will first be proved. To that 

effect we need the following: 

Lemma 1. A bond of a generalized benzenoid system H is not fixed if and only 
if it belongs to a conjugated circuit of H. 

Proof. Let e be a nonfixed bond. Let M and M'  be two Kekul6 structures of  H 
such that e belongs to M but not to M'.  Then e belongs to a circuit of the 
symmetric difference of M and M', i.e., MwM'-Mc~M' (see Fig. 6). This 
circuit is a conjugated circuit of H. Conversely, let C be a conjugated circuit of 
H containing e. Let K be a Kekul6 structure of H in which the vertices of C 
match themselves. Let K'  be the Kekul6 structure obtained by rotating K along 
C. Then e belongs to exactly one of K and K'. So it is not fixed. [] 

It was shown in [21] that if a graph different from K2 (i.e., the graph with 
two vertices and one edge) and with no cut vertices (a cut vertex is a vertex 
whose removal disconnects the graph) has a perfect matching then it has at least 
two perfect matchings. So a benzenoid system with a Kekul6 structure has at 
least two Kekul6 structures, and therefore it has some nonfixed bonds and N(H) 
is not empty. 

No fixed bonds No fixed bonds Has fixed bonds Fig. 5. 

" ~ "  belongs to M 

"~-----." belongs to M' 

The conjugated 
circuit contains 
e. 

Fig. 6. 
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We now prove: 

Theorem 2. Each connected component of the unfixed subgraph N(H) of a 
benzenoid system H is a normal benzenoid system. 

Proof Let N be a connected component of N(H). We must show that N has a 
Kekul6 structure and no fixed bonds nor nonhexagonal interior faces. First note 
that all edges joining a vertex of N to a vertex out of N are fixed single bonds. 
Hence any Kekul~ structure of H induces a Kekul6 structure of N and any 
Kekul6 structure of N can be extended to a Kekul6 structure of  H. So any 
conjugated circuit of  H contained in N is also a conjugated circuit of N and any 
conjugated circuit of  N is a conjugated circuit of H. Since no bonds of N are 
fixed in H, by Lemma 1, all belong to some conjugated circuits of H. As these 
conjugated circuits are connected and contain no fixed bonds of H, they are 
contained in AT. So they are conjugated circuits of  N. Thus N itself has no fixed 
bonds. Hence N has no cut bonds. By Theorem 1, the boundary C of  the exterior 
face of  N is a conjugated circuit of N and also of H. To show that N has no 
nonhexagonal inferior faces, we prove that no bonds of H contained in the inside 
of  C are fixed in H and thus N is equal to the subgraph N'  of  H induced by the 
vertices of C and its inside. Let K be a Kekul6 structure of H in which the 
vertices of  C match themselves (K exists as C is a conjugated circuit of H). Then 
N'  c~ K is a Kekul6 structure of N '  in which the vertices of C match themselves. 
C is a conjugated circuit of N'. By Theorem 1, N '  has no fixed bonds. So each 
bond of N '  is contained in a conjugated circuit of N'. It can be checked easily 
that any conjugated circuit of N'  is also a conjugated circuit of H. Therefore 
each bond of N '  is contained in a conjugated circuit of  H. By Lemma 1, none of  
the bonds of  H contained in the inside of C are fixed in H. Thus N '  = N. This 
completes the proof. [] 

From now on, we call a connected component of N(H) a normal component 
of H. To prove the first fact mentioned in the introduction we need several 
lemmas. The first one comes from [1], page 22: 

Lemma 2. The number of vertices of degree 2 of a benzenoid system H is equal 
to the number of vertices of degree 3 which belong to the boundary of  H plus 6. 

Since N(H) is not empty for a benzenoid system H, by Theorems 1 and 2, H 
has at least one conjugated circuit. The following lemma generalizes slightly this 
result. 

Lemma 3. Let H be a generalized benzenoid system without nonhexagonal 
interior faces which has at most one pending bond. Let K be a Kekul6 structure 
of H. Then H has a hexagon which contains three double bonds in K (this 
hexagon is a conjugated circuit). 

Proof Delete the cut bonds (but not their end vertices) if any from H. The 
remaining graph G may have several connected components (some of which may 
contain only one vertex). We assert that there is a connected component H' of  
G which is a benzenoid system and has at most one vertex incident to a cut bond 
of H. If  H has no cut bonds, then H is a benzenoid system. Let H' = H. The 
assertion is true. If H has cut bonds, then start at the pending vertex of H if it 
exists, otherwise at any connected component of G and repeat the following: 
follow unvisited cut bonds from the current visited connected component to the 
next unvisited connected component of G, until there is nowhere to go. Then the 
last visited connected component of  G has the described property. 
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There are two cases: 
Case 1. There is a vertex of H '  which matches in K a vertex not in H' .  Let f be 
the number of faces of H '  including its exterior face. Clearly, all faces of H' ,  
possibly except one, are hexagons. Let us call the double bonds of K contained 
in H '  but not in its boundary inner double bonds and the double bonds of K in 
the boundary of H' outer double bonds. Let e be the number of bonds and v be 
the number of vertices of H' .  Let kl be the number of outer double bonds and 
k2 be the number of inner double bonds. Suppose that the lemma is not true. 
Then each hexagon of H '  contains at most two double bonds. Each inner double 
bond belongs to exactly two hexagons and each outer double bond belongs to 
exactly one hexagon. So 2 ( f - 1 ) > ~  2k2 + kl (where f - 1  is the number of 
hexagons of H').  By Euler's formula for planar graphs, f +  v = e + 2. Thus 
2e + 2 - 2v ~> 2k2 + kl. Note that v = 2(kl + k2) + 1. So 2e ~> 6k2 + 5kl. Let d(x) 
denote the degree of vertex x of H '  and V(H') be the set of vertices of H' ,  then 

2e = ~ d(x) ) 6k 2 + 5k 1 
x E V ( H ' )  

(the first equality comes from the fact that each bond of H '  is counted twice in 
~x~ v(i~.~ d(x)). The following facts are true: 

(1) The double bonds in K contained in H '  cover all vertices of H '  except 
the one which matches in K a vertex not in H' .  

(2) The sum of degrees of the end vertices of an inner double bond is 6. 
(3) Since the boundary of H '  has an even number of vertices (for H '  is a 

bipartite graph) one of which matches in K a vertex not in H ' ,  there is at least 
one inner double bond which has an end vertex belonging to the boundary of H' .  

(4) By Lemma 2 and (3), the number of vertices of degree 3 covered by the 
outer double bonds plus 6 is less than or equal to the number of vertices of 
degree 2 covered by the outer double bonds. 

By (4), the sum of degrees of vertices in the boundary of H '  which are 
covered by outer double bonds is less than or equal to 5 k ~ -  3. So the sum of 
degrees of the vertices of H '  not covered by the inner double bonds (including 
the vertex adjacent to a cut bond) is less than or equal to 5k~ - 1. The sum of 
degrees of vertices covered by inner double bonds is 6k 2. So 

2e = ~ d(x) ~ 6k 2 + 5k 1 - 1. 
x • V ( H ' )  

This is a contradiction. 
Case 2. K c~ H' is a Kekul6 structure of H' .  Similarly to Case 1, we can prove the 
lemma. [] 

Before proving the next theorem, the following notations are needed. Let H 
be a benzenoid system, e be a bond of H, and s be a hexagon of the infinite 
hexagonal lattice which contains e (note that s may or may not be a hexagon of 
H). Let L~. e denote the segment of the perpendicular bisector of e which starts 
from the midpoint of e and ends at the central point of s if s does not belong to 
H, and otherwise passes through s, ends at the boundary of H and is totally 
contained in the interior region of H (see Fig. 7). 

By Lemma 2 of [19], the following is true: 

Lemma 4. Let H be a benzenoid system, K be a Kekul6 structure of H and e be 
a fixed single bond of H. If  the bonds e~ and e2 of K which cover the end vertices 
of e belong to a hexagon s of the infinite hexagonal lattice, then the bonds of H 
intersecting Ls,e are all fixed single bonds. 
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Theorem 3. Let H be a benzenoid system. If  H has fixed bonds then it has at 
least two normal components. 

Proof. By contradiction. Let H be the smallest counterexample to the conclu- 
sion. So H has only one normal component and N(H) is connected. There are 
two cases: 
Case 1. Suppose that there is a nonfixed bond which belongs to the boundary of  
H. Since H is the smallest counterexample and N(H) contains some bonds which 
belong to the boundary of H, the graph of H~ obtained by deleting all vertices 
of N(H) together with their incident bonds from H is connected, and all of its 
bonds are fixed in H as well as in itself. Let C be the boundary of N(H). By 
Theorem 1 it is a conjugated circuit of N(H). It is also a conjugated circuit of H. 
By Theorem 1 and the assumption, some but not all of  C's bonds belong to the 
boundary of H (otherwise, H has no fixed bonds). Let P1 be a segment of the 
boundary of H such that only its end vertices belong to C. Let P2 be a segment 
of C which has the same end vertices as P1 but is not contained in the boundary 
of H (see Fig. 8). Let H '  be the subgraph whose boundary is P1 wP2 (see Fig. 
8). Let K be a Kekul6 structure of H in which the vertices of C match themselves. 
If  P2 has an even number of vertices, by the choice of K we can assume that the 
vertices of P2 match themselves in K. So K c~ H '  is a Kekul6 structure of H' .  By 
Lemma 3, H '  has a hexagon which contains three double bonds in K. Hence H 
has a nonfixed bond which is not in N(H), a contradiction. If P2 has an odd 
number of vertices, without loss of  generality, let Vl be the end vertex of P~ which 
matches a vertex v2 out of P~ in K. Let (Vl, v2) be the double bond in K. Then 
the generalized benzenoid system which is the union of H '  and (Vl, v2) satisfies 
the condition of Lemma 3. So H '  has a hexagon which contains three double 
bonds in K. But this hexagon contains a bond which is not fixed in H and does 
not belong to N(H). This is a contradiction. 
Case 2. Let all bonds in the boundary of H be fixed bonds. Suppose H is drawn 
on the plane such that some of ifs bonds are vertical. Let K be a Kekul6 structure 

Fig. 8. 
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Fig. 9. 

of H. One can check easily that there is a vertical bond e in the top level which 
belongs to K. Let s be the hexagon which contains e. Without loss of  generality, 
let e be the right vertical bond of s. Let e~ and e 2 be the two bonds of s as shown 
in Fig. 9. Then e2 belongs to K. Since el is a fixed single bond, all bonds 
intersecting Ls,e 1' by Lemma 4, are fixed single bonds. Let H1 a n d / / 2  be the two 
connected subgraphs obtained by deleting all the bonds intersecting Ls,e~ (but 
not their end vertices) from H. Then both of them have at most  one pending 
vertex (possibly e2 or e) and no nonhexagonal interior faces. By Lemma 3 and 
considering K, Hi (i = 1, 2) has a hexagon which contains three double bonds in 
K. So H has at least two normal components. A contradiction again. This 
completes the proof. [] 

4 Small normal components 

The size of  the normal components may influence their number as we next 
show. 

Theorem 4. I f  a benzenoid system H with more than one hexagon has a normal 
component  which is a single hexagon, then H has at least three normal 
components. 

Proof Let s be the hexagon which is a normal component.  Then all bonds which 
are adjacent to s but not in s are fixed single bonds. Let K~ be a Kekul~ structure 
of  H in which the vertices of  s match themselves. Let/£2 be the Kekul6 structure 
obtained by rotating K1 along s. There are two cases: 
Case 1. There is a bond, e, of  s which is a separating bond of H. Without loss 
of generality let H(e) contain s and e belong to/£1. Clearly K1 c~ H(e)" is a Kekul~ 
structure of  H(e)'. Moreover, the two bonds of H(e)' adjacent to e are fixed 
single bonds of H(e)'. Otherwise, they are not fixed single bonds in H, a 
contradiction. By Theorem 3, H(e)" has at least two normal components.  I t  can 
be verified easily that each of the normal components of  H(e)" is also a normal 
component  of  H. So H has at least three normal components. 
Case 2. No bonds of s are separating bonds of H. So there are two adjacent 
hexagons of H (two hexagons are adjacent if they share a common bond), sl and 
s2 which are adjacent to s. Let e~, e2, e3, e4, es, e6, a, b and c be the bonds shown 
in Fig. 10. Also let s3 and s4 denote the hexagons shown in Fig. 10 which may 
or may not belong to H. Without loss of  generality, let el and e 2 belong to K1 
(see Fig. 10). There are two subcases: 
Subcase 1. Suppose that e3 belongs to /£i (see Fig. 11). It  is in K2 as well. By 
Lemma 4 and considering K2, all bonds intersecting Lsl,a and Ls4.c are fixed 
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Fig. 10. Fig. 11. 

.,.o./~ l's4'c H2 
";" 

single bonds. Similarly, by Lemma 4 and considering 321, the bonds intersecting 
Ls2,b are fixed single bonds. Let H'  be the subgraph obtained by deleting the 
fixed single bonds but not their end vertices which intersect Ls2 b, Lsl a and Ls4 c 
from H. Let H1 and//2 be the two connected components of H '  which contain 
e2 and e 6 respectively (see Fig. 1 1). Both have no nonhexagonal interior faces. 
Each of HI and/ /2  has only one pending vertex and no nonhexagonal interior 
faces. Considering KI, by Lemma 3, H~, as well as //2, contains a normal 
component of H. Thus H has at least three normal components. 
Subcase 2. Suppose e3 does not belong to K1. Then considering/£1, a, and s3, by 
applying Lemma 4, the bonds intersecting Ls3,a are fixed single bonds (see Fig. 
12). Let Ha be the generalized benzenoid system of H which is the connected 
component containing e2 of the subgraph obtained by deleting all fixed single 
bonds (but not their end vertices) intersecting L~3,a and L~2,b from H (see Fig.. 
1 2). Then//3 has no pending vertex and nonhexagonal interior faces. By Lemma 
3 and considering K1, H3 contains a normal component of H. Also as in Subcase 
1,//2 contains another normal component of H. So H has at least three normal 
components. [] 

The following example (Fig. 13) shows that there are some benzenoid 
systems which have a single hexagon as one of their normal components. 

,~,a / L s 4 , c  

• "° " s " 3 e 

• O O L 3 2 ,  b 

Fig. 12. 

H N(H) 

Fig. 13. 
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